MEMS Switches Run For 100 Billion Cycles

July 29, 2004
These rugged MEMS switches offer low insertion loss, high isolation, and high linearity for a variety of commercial and military applications needing high reliability with low current consumption.

Microelectromechanical systems (MEMS) technology is coming of age in terms of reliability. The RMSW200 RF MEMS single-pole, single-throw switch offered by RadantMEMS (Stow, MA), for example, has been performance tested at 10 GHz for high reliability even over 100 billion switching cycles. The switch, which is designed for applications from DC to 40 GHz, also shaves insertion loss to a bare minimum compared to competing technologies, such as PIN-diode-based solid-state switches.

The company's MEMS switches are three-terminal devices that employ a cantilever beam. The switches are fabricated with an all-metal surface micromachining process on high-resistivity silicon. For environmental protection, the switches are hermetically sealed within wafer-scale packaging. A basic RadantMEMS switch configuration consists of a drain, source, gate, and beam (see figure). The beam is deflected by applying a voltage between the gate and source electrodes. The free end of the beam contacts the drain and completes an electrical path between the drain and the source. The company's switches are designed for actuation (gate) voltages from 40 to 120 V. At low frequencies, the on resistance has been measured at less than 1W, while the on-response switching time is about 5 s.

Performance testing conducted on an eight-contact MEMS switch with 0.5-W input power at 10 GHz revealed the device to be perfectly functional when the testing was stopped after 100 billion switching cycles. Both insertion loss and isolation remained stable over the life of the switch. For a switching rate of 1 kHz, the power consumption was a low 5 W.

The company's DC-to-40-GHz model RMSW200 SPST switch is among the highest-frequency commercial MEMS switches. It features less than 0.5 dB insertion loss to 38 GHz and better than 20 dB return loss to 36 GHz. Insertion loss is typically less than 0.27 dB at 2 GHz. The isolation is 20 dB at 10 GHz and 13 dB at 40 GHz.

The model RMSW100 SPST switch is designed for use from DC to 12 GHz. It features less than 0.15 dB insertion loss at 2 GHz and more than 25 dB isolation at 2 GHz, with better than 30-dB return loss at 2 GHz.

RadantMEMS, 255 Hudson Rd., Stow, MA 01775; (978) 562-3866, FAX: (978) 562-6277, e-mail: [email protected], Internet: www.radantmems.com.

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

MMIC Medium-Power Amplifier Covers 6 to 12 GHz

Nov. 11, 2024
Mini-Circuits is a global leader in the design and manufacturing of RF, IF, and microwave components from DC to 86GHz.

RF Amplifier and Filter Testing with Mini-Circuits Power Sensors

Nov. 11, 2024
RF power sensors are essential for accurately measuring RF components like filters and amplifiers, focusing on parameters such as insertion loss and gain. Employing instruments...

High-Frequency Modules to 110 GHz

Nov. 11, 2024
Mini-Circuits’ wide selection of high-frequency modules are designed, assembled and tested in-house by the best talent in the industry at our Deer Park Technology Center. The ...

Defense Technology: From Sea to Space

Oct. 31, 2024
Learn about these advancements in defense technology, including smart sensors, hypersonic weapons, and high-power microwave systems.