CMOS Schottky-Diode Doubler Extends To 140 GHz

July 23, 2009
Thanks To recenT cMos advances, it has become possible to implement voltage-controlled oscillators (VCOs) and a Schottky diode detector operating above 100 GHz. In fact, a millimeter-wave Schottky-diode frequency doubler fabricated in CMOS has ...

Thanks To recenT cMos advances, it has become possible to implement voltage-controlled oscillators (VCOs) and a Schottky diode detector operating above 100 GHz. In fact, a millimeter-wave Schottky-diode frequency doubler fabricated in CMOS has been developed by Chuying Mao, Chakravartula Shashank Nallani, Swaminathan Sankaran, Eunyoung Seok, and Kenneth K. O from the University of Florida. The doubler, which is built in 130-nm CMOS, can generate signals to 140 GHz. At 125 GHz, it exhibits ~10 dB conversion loss and delivers 1.5 dBm output power. The doubler offers input matching beyond 10 dB from 61 to 66 GHz. Its rejection of fundamental signals at the output port is greater than 12 dB for inputs from 61 to 66 GHz.

Compared to the Schottky diodes in silicongermanium (SiGe) BiCMOS, the Schottky diode in CMOS does not have an n+ buried layer. Thus, it has a smaller unit diode cell area and larger n+ cathode contact areas to lower series resistance. These aspects raise the cathode-to-substrate capacitance. Together with non-negligible substrate resistance, such issues make it difficult for CMOS to use a series topology for frequency multiplication. As a result, the researchers used a balanced topology with two Schottky shunt-barrier diodes with grounded cathodes, which can increase the output power used for the CMOS implementation. U

sing the Schottky barrier diodes, it should be possible to implement CMOS frequency doublers operating above 300 GHz. However, they will have lower conversion efficiency and output power. See "125-GHz Diode Frequency Doubler in 0.13-m CMOS," IEEE Journal Of Solid-State Circuits, May 2009, p. 1531.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

Phase Noise Fundamentals: What You Need to Know

Dec. 26, 2024
Gain a deeper understanding of phase noise and its impact on oscillators. This white paper offers a concise technical introduction to phase noise concepts, along with an overview...

Selecting Your Next Oscilloscope: Why Fast Update Rate Matters

Dec. 26, 2024
Selecting your next oscilloscope - A guide from Rohde & Schwarz

Webinar: Fundamentals of EMI Debugging & Precompliance

Dec. 26, 2024
In this webinar our expert will guide you through the fundamentals of EMI debugging & precompliance measurements.

Learn the Fundamentals of Test and Measurement

Dec. 26, 2024
Unlock your measurement potential with Testing Fundamentals from Rohde & Schwarz. Expert resources to help you master measurement basics. Explore now.