Pentagon-Shaped Microstrip Antenna Serves UWB Applications

July 23, 2009
planar forMs of UlTra-wideband (UWB) antennas can be integrated between the radio-frequency (RF) front-end circuitry and the radiating structure. They can therefore be implemented using microstrip technology. At California's San Diego State ...

planar forMs of UlTra-wideband (UWB) antennas can be integrated between the radio-frequency (RF) front-end circuitry and the radiating structure. They can therefore be implemented using microstrip technology. At California's San Diego State University, Sunil Kumar Rajgopal and Satish Kumar Sharma presented a UWB microstrip antenna that combines a pentagon-shaped slot, feed line, and pentagon stub to obtain a 124-percent impedance bandwidth from 2.65 to 11.30 GHz. In doing so, it exceeds the UWB requirement of 110 percent from 3.10 to 10.60 GHz.

The antenna uses a 50-x-80-mm groundplane, which covers only the top 20 mm or 25 percent of the groundplane length. The researchers considered three antenna design variations using the straight and rotated feed lines on two different substrates: a straight feed line on Rogers' RT/Duroid 5880 substrate, a tilted feed line on that same substrate, and a tilted feed line on FR-4 substrate. For all three designs, the substrate material's thickness was 1.58 mm. The antenna is fed using a 50-O coaxial SMA connector, which is connected to a 50-O microstrip transmission feed line. The reflection coefficient results for all three designs were obtained using Ansoft Designer simulations.

The feed lines of two designs were rotated by 15 deg. Those designs exhibited enhanced bandwidth compared to the design that used the straight feed line. The simulation of the second design, which provided the maximum bandwidth, showed that near omni-directional radiation patterns can be obtained. Yet they deteriorate toward the higherfrequency end. These variations in radiation pattern are attributed to the irregular pentagon shapes of both the slot and the stub as well as its effective electrical dimension variation with the frequency. See "Investigations on Ultrawideband Pentagon Shape Microstrip Slot Antenna for Wireless Communications," IEEE Transactions On Antennas And Propagation, May 2009, p. 1353.

About the Author

Nancy Friedrich | RF Product Marketing Manager for Aerospace Defense, Keysight Technologies

Nancy Friedrich is RF Product Marketing Manager for Aerospace Defense at Keysight Technologies. Nancy Friedrich started a career in engineering media about two decades ago with a stint editing copy and writing news for Electronic Design. A few years later, she began writing full time as technology editor at Wireless Systems Design. In 2005, Nancy was named editor-in-chief of Microwaves & RF, a position she held (along with other positions as group content head) until 2018. Nancy then moved to a position at UBM, where she was editor-in-chief of Design News and content director for tradeshows including DesignCon, ESC, and the Smart Manufacturing shows.

Sponsored Recommendations

MMIC Medium-Power Amplifier Covers 6 to 12 GHz

Nov. 11, 2024
Mini-Circuits is a global leader in the design and manufacturing of RF, IF, and microwave components from DC to 86GHz.

RF Amplifier and Filter Testing with Mini-Circuits Power Sensors

Nov. 11, 2024
RF power sensors are essential for accurately measuring RF components like filters and amplifiers, focusing on parameters such as insertion loss and gain. Employing instruments...

High-Frequency Modules to 110 GHz

Nov. 11, 2024
Mini-Circuits’ wide selection of high-frequency modules are designed, assembled and tested in-house by the best talent in the industry at our Deer Park Technology Center. The ...

Defense Technology: From Sea to Space

Oct. 31, 2024
Learn about these advancements in defense technology, including smart sensors, hypersonic weapons, and high-power microwave systems.