MEMS SPDT Switch Runs With +3 VDC

July 1, 2003
Designed for applications to 6 GHz, this MEMS SPDT switch handles peak RF power levels to 3 W and consumes less than 3 mW power.

Microelectromechanical-systems (MEMS) technology has been commonly applied to RF components with moving parts, such as single-pole, double-throw (SPDT) switches, varactors, and inductors. Until now, low-voltage-actuated MEMS devices have been rare. With the introduction of the DKM812-3 RF switch from Dow-Key Microwave Corp. (Ventura, CA), however, 3 V is all that is needed to control this commercial MEMS reflective SPDT switch. With sufficiently low power consumption for portable applications, the SPDT MEMS switch is well suited for use through 6 GHz.

The MEMS SPDT switch consists of a moving part (a cantilever) that is shifted to different positions by a magnetic field. The magnetic field is manipulated by the applied control voltage. The technology has been in existence since the 1970s in the forms of temperature and pressure sensors, with accelerated development taking place in the 1990s thanks to funding from the Defense Advanced Research Projects Agency (DARPA). Since MEMS technology offers potential for tiny switches and other microwave components through about 50 GHz, both commercial and military developers have pushed the technology toward RF and optical applications.

The DKM812-3 RF switch (see figure) improves in efficiency and versatility over the company's earlier MEMS single-pole, single-throw switch (see Microwaves & RF, November 2001, p. 104). It can be used in a variety of applications, including automatic test equipment (ATE), wireless local-area networks (WLANs), Global Positioning System (GPS) receivers (Rxs), wireless handsets, and smart antennas. It features low insertion loss of typically 0.15 dB or less at 1 GHz and typically 0.3 dB or less at 6 GHz. The isolation is 30 dB at 1 GHz and more than 20 dB at 6 GHz, and the return loss is 14 dB or better from 100 kHz to 6 GHz. The tiny switch consumes less than 3 mW power.

The reflective RF switch handles average RF power of 2 W and as much as 3 W power on peaks. The device has been found to perform without compression at input power levels to +37 dBm at 2.4 GHz. The switch has an input third-order intercept point of +65 dBm minimum.

Although this device is specified for 10 million cycles, similar MEMS devices have been found to provide well over 100 million operations without degradation in performance. The MEMS switch, which is rated for operating temperatures of −40 to +85°C, is housed in a JEDEC MO-220 package that measures 7 × 7 × 1.5 mm. Dow-Key Microwave Corp., 4822 McGrath St., Ventura, CA 93003-7718; (805) 650-0260, FAX: (805) 650-1734, Internet: www.dowkey.com.

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

Phase Noise Fundamentals: What You Need to Know

Dec. 26, 2024
Gain a deeper understanding of phase noise and its impact on oscillators. This white paper offers a concise technical introduction to phase noise concepts, along with an overview...

Selecting Your Next Oscilloscope: Why Fast Update Rate Matters

Dec. 26, 2024
Selecting your next oscilloscope - A guide from Rohde & Schwarz

Webinar: Fundamentals of EMI Debugging & Precompliance

Dec. 26, 2024
In this webinar our expert will guide you through the fundamentals of EMI debugging & precompliance measurements.

Learn the Fundamentals of Test and Measurement

Dec. 26, 2024
Unlock your measurement potential with Testing Fundamentals from Rohde & Schwarz. Expert resources to help you master measurement basics. Explore now.