Buck Converter Drops Static Power To 217 nW

Aug. 9, 2012
In many medical monitoring systems, each patient wears several sensors.

In many medical monitoring systems, each patient wears several sensors. Those sensor nodes transmit specific physiological signals in a group of small monitoring systems. The sensed data is collected wirelessly by the central health server. Because each sensor node works as a micro system, it must be sustained for a long time without changing the battery. To achieve high conversion efficiency over a wide load range, a battery-free, nano-power buck converter with dynamic on/off time (DOOT) control was recently proposed by Ming-Wei Lee from Taiwan’s Industrial Technology Research Institute (ITRI) together with Chen-Chih Huang and Yin-Hsi Lin from Realtek Semiconductor Corp. and Tzu-Chi Huang, Chun-Yu Hsieh, Yao-Yi Yang, Yu-Huei Lee, Yu-Chai Kang, and Ke-Horng Chen from National Chiao Tung University.

Their DOOT control can predict the on/off time at different input voltages without a power-consuming zero-current-detection (ZCD) circuit. To adapt to the fluctuations in a harvesting system, the proposed α-calibration scheme guarantees accurate ZCD over process, voltage variation, and temperature (PVT) in the DOOT.

For its part, the adaptive-phase-lead (APL) mechanism improves the inherent propagation delay that arises due to a low-power and non-ideal comparator. As a result, load regulation is improved by as much as 30 mV. In addition to consuming low static power, the nano-power bias circuit generates a 1-V reference voltage.

The test chip was implemented in 0.25-μm CMOS with a die area of 0.39 mm2. Experimental results showed 95% peak efficiency, static power of 217 nW, and load regulation of 0.1 mV/mA. See "A Battery-Free 217 nW Static Control Power Buck Converter for Wireless RF Energy Harvesting with α-Calibrated Dynamic On/Off Time and Adaptive Phase Lead Control," IEEE Journal Of Solid-State Circuits, April 2012, p. 852.

Sponsored Recommendations

MMIC Medium-Power Amplifier Covers 6 to 12 GHz

Nov. 11, 2024
Mini-Circuits is a global leader in the design and manufacturing of RF, IF, and microwave components from DC to 86GHz.

RF Amplifier and Filter Testing with Mini-Circuits Power Sensors

Nov. 11, 2024
RF power sensors are essential for accurately measuring RF components like filters and amplifiers, focusing on parameters such as insertion loss and gain. Employing instruments...

High-Frequency Modules to 110 GHz

Nov. 11, 2024
Mini-Circuits’ wide selection of high-frequency modules are designed, assembled and tested in-house by the best talent in the industry at our Deer Park Technology Center. The ...

Defense Technology: From Sea to Space

Oct. 31, 2024
Learn about these advancements in defense technology, including smart sensors, hypersonic weapons, and high-power microwave systems.