GettyImages-1030878112.jpg

Frequency-Selective Surfaces Go in Circles

April 22, 2019
Two frequency-selective-surface designs were created for single- and dual-band applications at microwave frequencies.

A frequency-selective surface (FSS) holds great promise for a wide range of applications, from communications and security systems through radomes and radar surfaces. An FSS can function as a combination antenna, filter, and shield, depending on the shape of the FSS. Although not traditionally used, researchers from Spain and Portugal explored using combinations of multiple semicircles in two different FSS designs: a single-band, band-rejection design (or single-band, bandpass design when configured in reverse) and a dual-band FSS.

The single-band/band-reject FSS design was obtained from four semicircles with a 90-deg. rotation around the center between each other. The dual-band FSS combines eight semicircles in a pattern resembling a square shape, with alternating 270 and 180 deg. rotation around the edge of each semicircle. Such parameters as the conductor thickness and the radius of each semicircle determine the resonant frequencies of the structures.

Both FSS designs were simulated with commercial electromagnetic (EM) simulation software—CST Microwave Studio from Computer Simulation Technology. The four-semicircle FSS design was designed for resonant frequency of 2.4 GHz and compared with classical FSS designs using square, ring, and swastika configurations.

The four semicircles provided a bandwidth of 330 MHz at 2.4 GHz, compared to bandwidths of 1140, 820, and 680 MHz at 2.4 GHz for the square, ring, and swastika FSS configurations. Similarly, the eight-semicircle FSS was compared with dual-band classical FSS designs. The first resonance at about 3.1 GHz had a bandwidth of 600 MHz; the second resonance, at about 7.2 GHz, had a bandwidth of 275 MHz, or considerably narrower than the earlier dual-band FSS designs.

Measurements on the two FSS designs were made by fabricating the semicircle configurations in large numbers on FR-4 printed-circuit-board (PCB) material and then characterizing the PCBs on commercial test equipment. The single-band FSS was tuned to 2.4 GHz while the dual-band FSS was tuned for both 2.37 and 5.29 GHz. Relatively good agreement between computer simulations and measured results was found when allowing for small deviations in fabricated FSS dimensions.

See “Multi-Semicircle-Based Single- and Dual-Band Frequency-Selective Surfaces,” IEEE Antennas & Propagation Magazine, April 2019, pp. 32-39.

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

MMIC Medium-Power Amplifier Covers 6 to 12 GHz

Nov. 11, 2024
Mini-Circuits is a global leader in the design and manufacturing of RF, IF, and microwave components from DC to 86GHz.

RF Amplifier and Filter Testing with Mini-Circuits Power Sensors

Nov. 11, 2024
RF power sensors are essential for accurately measuring RF components like filters and amplifiers, focusing on parameters such as insertion loss and gain. Employing instruments...

High-Frequency Modules to 110 GHz

Nov. 11, 2024
Mini-Circuits’ wide selection of high-frequency modules are designed, assembled and tested in-house by the best talent in the industry at our Deer Park Technology Center. The ...

Defense Technology: From Sea to Space

Oct. 31, 2024
Learn about these advancements in defense technology, including smart sensors, hypersonic weapons, and high-power microwave systems.