3. The BNC connector is often found in test instruments.
The 2.4-mm connector, which was developed in the mid-1980s, can achieve performance to 50 GHz. 2.4-mm connectors have a thick outer wall, thus making them less frail than SMA and 2.92-mm connectors. At first glance, it may be difficult to distinguish a 2.4-mm connector from a 2.92-mm connector. However, should one attempt to connect a 2.4-mm connector to an SMA connector, the difference will be very clear—the two connector types will not mate. Therefore, an appropriate adapter is needed to connect a 2.4-mm connector to either an SMA, 3.5-mm, or 2.92-mm connector.
In addition, the 1.85-mm connector can achieve mode-free performance to 65 GHz. HP developed the connector in the mid-1980s. The company then offered its design as public domain in 1988 for the purpose of standardizing connector types. 1.85-mm connectors can be mated with 2.4-mm connectors, but not with SMA, 3.5-mm, and 2.92-mm connectors.
Furthermore, millimeter-wave applications can take advantage of the 1.0-mm connector. This connector, which was also developed by HP, can achieve performance to 110 GHz. Probe stations are an example of an application that utilizes 1.0-mm connectors.
Not Forgotten—BNC and TNC Connectors
The widely used BNC connector has a typical frequency range of dc to 4 GHz (Fig. 3). Commonly used for test-and-measurement equipment, the BNC connector, which employs the bayonet-coupling technique, is offered with an impedance of either 50- or 75-Ω. Female connectors have two bayonet lugs and can be connected to male connectors with just a ¼-turn of the coupling nut. Unfortunately, BNC connectors are not usable above 4 GHz because they are prone to radiation at those frequencies. BNC connectors are covered by MIL-C-39012.
The TNC connector is a threaded version of the BNC connector, offering higher-frequency performance than its BNC counterpart. These connectors are typically rated to 11 GHz. Like the BNC connector, the TNC connector is covered by MIL-C-39012.
Conclusion
To summarize, a wide range of coaxial connectors are available to satisfy the demands of today’s high-frequency applications. This series discussed some of the commonly used connectors, but additional types exist that were not mentioned. Although connectors may seem mundane, they are crucial for any application. Thus, it is important to understand the basics of coaxial connectors and the many options that are available today.
Looking for parts? Go to SourceESB.
Download this article in .PDF format