Image

Smart RFID-Reader Phase Techniques Guide Indoor Autonomous Vehicles

Feb. 12, 2014
Using the phase of periodically placed RFID tags, a tag reader equipped autonomous vehicle is able to identify its location within an indoor environment using the tag phase difference.

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

Whether they are commercial or industrial, indoor environments leave autonomous vehicles with the troubling problem of navigation. Sophisticated machine-control and motion technologies are only as useful as a vehicle’s awareness of its location and the environment around it. To assist autonomous robots in finding their way, Emidio DiGiampaolo and Francesco Martinelli of Italy’s University of L’Aquila designed a passive radio-frequency-identification (RFID) tag and reader technique. Their approach enables autonomous control through RFID-tag placement.

The phase of the RFID tag’s response signals is sensed by an on-board RFID tag reader. An advanced, multihypothesis Kalman filtering technique is used to enhance the performance of the localizationeven in low-density tag environments. This technique results in location accuracy within a few centimeters. The key is a high-directivity ad-hoc tag, which is designed to create a stable and geometrically bounded detection region matched with the extended Kalman filter and odometry readings.

Robots equipped with the localization technology and wheel odometers were tested in a variety of indoor environments for robustness. According to the researchers, the localization of the robots saw improvements compared to what has been reported in other literature. Future work developing more optimal tag placement could lead to enhanced localization accuracy. See “Mobile Robot Localization Using the Phase of Passive UHF RFID Signals,” IEEE Transactions On Industrial Electronics, Jan. 2014, p. 365.

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.
About the Author

Jean-Jacques DeLisle

Jean-Jacques graduated from the Rochester Institute of Technology, where he completed his Master of Science in Electrical Engineering. In his studies, Jean-Jacques focused on Control Systems Design, Mixed-Signal IC Design, and RF Design. His research focus was in smart-sensor platform design for RF connector applications for the telecommunications industry. During his research, Jean-Jacques developed a passion for the field of RF/microwaves and expanded his knowledge by doing R&D for the telecommunications industry.

Sponsored Recommendations

Phase Noise Fundamentals: What You Need to Know

Dec. 26, 2024
Gain a deeper understanding of phase noise and its impact on oscillators. This white paper offers a concise technical introduction to phase noise concepts, along with an overview...

Selecting Your Next Oscilloscope: Why Fast Update Rate Matters

Dec. 26, 2024
Selecting your next oscilloscope - A guide from Rohde & Schwarz

Webinar: Fundamentals of EMI Debugging & Precompliance

Dec. 26, 2024
In this webinar our expert will guide you through the fundamentals of EMI debugging & precompliance measurements.

Learn the Fundamentals of Test and Measurement

Dec. 26, 2024
Unlock your measurement potential with Testing Fundamentals from Rohde & Schwarz. Expert resources to help you master measurement basics. Explore now.