Image

Reject the Second Harmonic with Microstrip Side-Coupled Filters

Nov. 5, 2015
Adding notch filter elements can significantly improve the second-harmonic rejection of microstrip side-coupled filters.

Filters used in communication systems must reject unwanted signals from propagating through a network. One instance of these unwanted signals occurs when driving an amplifier into nonlinear operation, thereby producing spectral components at harmonic frequencies. Although microstrip side-coupled filters are widely utilized, they provide limited second-harmonic rejection.

In a four-page application note titled, "Improving the Second-harmonic Passband Rejection of Microstrip Side-coupled Filters," National Instruments demonstrates a solution to improve the second-harmonic rejection of this filter class. This technique incorporates notch elements into the design of a side-coupled filter without significantly affecting its passband response.

The application note first presents a side-coupled filter that’s built from several sections of coupled transmission lines. Each section in this filter is offset from the previous one, leading to a wide footprint. The NI AWR Design Environment filter synthesis tool is used to create the initial filter design based on user-defined characteristics, such as passband frequencies, passband ripple, and stopband rejection.

To achieve a narrower footprint, transmission lines are added between the coupled-line pairs in the design example. This, in turn, allows the filter to be housed in a narrower waveguide, eliminating the possibility of second-harmonic waveguide-mode propagation. To implement notch filtering, open-circuited microstrip stubs are added to the design. These stubs are a quarter-wavelength long at the second harmonic of the passband’s center frequency, enabling the unwanted second harmonic to be rejected.

Thanks to the narrower footprint, the filter can be housed in a WR-22 waveguide. The app note presents the filter’s frequency response both with and without the waveguide. The results demonstrate greater than 50-dB second-harmonic rejection. In addition, coax connectors are modeled using the Analyst three-dimensional (3D) finite-element method (FEM) simulator in the NI AWR design environment. The coax connecters are then incorporated into a complete simulation model, which is presented along with the simulation results. Lastly, for comparison purposes, the same filter is simulated inside a WR-42 waveguide. In this case, the second-harmonic rejection is 30 dB worse due to the waveguide effect.

National Instruments Corp., 11500 N Mopac Expwy., Austin, TX 78759-3504; (877) 388-1952

Sponsored Recommendations

Phase Noise Fundamentals: What You Need to Know

Dec. 26, 2024
Gain a deeper understanding of phase noise and its impact on oscillators. This white paper offers a concise technical introduction to phase noise concepts, along with an overview...

Selecting Your Next Oscilloscope: Why Fast Update Rate Matters

Dec. 26, 2024
Selecting your next oscilloscope - A guide from Rohde & Schwarz

Webinar: Fundamentals of EMI Debugging & Precompliance

Dec. 26, 2024
In this webinar our expert will guide you through the fundamentals of EMI debugging & precompliance measurements.

Learn the Fundamentals of Test and Measurement

Dec. 26, 2024
Unlock your measurement potential with Testing Fundamentals from Rohde & Schwarz. Expert resources to help you master measurement basics. Explore now.