5G

Dielectric Antenna Adds Photomixer for Terahertz Emissions

March 1, 2017
An easy-to fabricate dielectric rod waveguide (DRW) antenna was developed with an integrated photomixer for emission of millimeter-wave and terahertz radiation.

The use of terahertz EM energy in combination with optoelectronics technology offers great promise for short-range, high-data-rate communications, which will likely be needed in Fifth-Generation (5G) wireless-communications networks and to appease the general public’s growing obsession with having more data available on mobile wireless devices. To facilitate such communications, photomixing has been performed to achieve carrier waves at terahertz frequencies. Accordingly, researchers from sites in Spain, Finland, and Germany have developed a dielectric rod waveguide (DRW) antenna with integrated photomixer.

Classic generation of terahertz signals involves the photomixing of two heterodyne laser beams in a semiconductor device with signals emitted by a suitable antenna for the wavelength of interest. Since power from available semiconductor devices is quite limited at terahertz frequencies, the design of the antenna is critical for achieving a usable radiation pattern.

The researchers chose to integrate the photomixer with a planar DRW antenna for its low cost and ease of fabrication on commonly available substrate materials, such as silicon or GaAs semiconductor wafers. A prototype was manufactured on 500-μm-thick GaAs; the antenna has a cross section of 1.0 × 0.5 mm2. It can be fed by rectangular metal waveguide for ease of installation, and produced consistent radiation patterns at 137 GHz.

See: “Dielectric Rod Waveguide Antenna as THz Emitter for Photomixing Devices,” IEEE Transactions on Antennas and Propagation, Vol. 63, No. 3, March 2015, p. 882.

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

Phase Noise Fundamentals: What You Need to Know

Dec. 26, 2024
Gain a deeper understanding of phase noise and its impact on oscillators. This white paper offers a concise technical introduction to phase noise concepts, along with an overview...

Selecting Your Next Oscilloscope: Why Fast Update Rate Matters

Dec. 26, 2024
Selecting your next oscilloscope - A guide from Rohde & Schwarz

Webinar: Fundamentals of EMI Debugging & Precompliance

Dec. 26, 2024
In this webinar our expert will guide you through the fundamentals of EMI debugging & precompliance measurements.

Learn the Fundamentals of Test and Measurement

Dec. 26, 2024
Unlock your measurement potential with Testing Fundamentals from Rohde & Schwarz. Expert resources to help you master measurement basics. Explore now.