Transceiver

CMOS Transceiver Tackles 210 GHz with OOK Modulation

May 27, 2015
Affordable radio communications devices for millimeter-wave frequencies will free the way for low-cost communications across short distances in relatively unused frequency bands.

Affordable radio communications devices for millimeter-wave frequencies will free the way for low-cost communications across short distances in relatively unused frequency bands. To take advantage of some of these higher frequencies, Zheng Wang, Pei-Yuan Chiang, Peyman Nazari, Chun-Cheng Wang, Zhiming Chen, and Payam Heydari of the Nanoscale Communication IC (NCIC) Labs at the University of California, Irvine developed a fundamental-frequency radio transceiver for use at 210 GHz. The transceiver is based on a 32-nm SOI silicon CMOS semiconductor process; it employs on-off-keying (OOK) modulation in support of data rates to 10 Gb/s.

This 210-GHz transceiver includes an OOK modulator, a power amplifier driver, a differential power distribution network, four power amplifiers, a voltage-controlled oscillator (VCO), and a 2 × 2 dipole antenna array on the transmit side. The receive side features a receiver with an on-chip antenna, a low-noise amplifier, and a power detector. The LNA exhibits in-band gain of 18 dB and minimum noise figure of 11 dB. The transmitter achieves EIRP of +5.13 dBm at 10-dB backoff from the saturated output-power level. The different components on the transceiver, such as the LNA, have been characterized with the aid of a commercial microwave vector network analyzer (VNA), with a highest measurable frequency of 220 GHz. The transceiver chip includes a transmit section of 1.4 × 2.5 mm2 while the receiver section occupies an area of 0.8 × 1.4 mm2. Because of the on-chip antenna integration, a low-cost assembly was achieved without any need of millimeter-wave bonding techniques.

The transceiver was tested under practical conditions, where a modulated continuous-wave (CW) modulated signal from the transmitter was sent to the receiver across a distance of 3.5 cm. The signal is produced by modulating a baseband signal sent to the transmitter to a frequency of 210 GHz. The receiver captures the signal and detects the baseband signal. The receiver has a full bandwidth of 20 GHz and is found to achieve receive sensitivity of -47 dBm with receive noise figure of about 12 dB. The transceiver can achieve short-range data rates to 10 Gb/s without filtering and to 20 Gb/s with ideal filtering. See “A CMOS 210-GHz Fundamental Transceiver With OOK Modulation,” IEEE Journal of Solid State Circuits, March 2014, p. 564.

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

Phase Noise Fundamentals: What You Need to Know

Dec. 26, 2024
Gain a deeper understanding of phase noise and its impact on oscillators. This white paper offers a concise technical introduction to phase noise concepts, along with an overview...

Selecting Your Next Oscilloscope: Why Fast Update Rate Matters

Dec. 26, 2024
Selecting your next oscilloscope - A guide from Rohde & Schwarz

Webinar: Fundamentals of EMI Debugging & Precompliance

Dec. 26, 2024
In this webinar our expert will guide you through the fundamentals of EMI debugging & precompliance measurements.

Learn the Fundamentals of Test and Measurement

Dec. 26, 2024
Unlock your measurement potential with Testing Fundamentals from Rohde & Schwarz. Expert resources to help you master measurement basics. Explore now.