Wireless communications

Generating Frequency-Tunable Continuous-Wave THz Signals

Sept. 11, 2015
This use of fiber and lasers may provide a cost-effective means of generating tunable terahertz signals.

Terahertz signals are being explored for a wide range of applications, including high-resolution imaging, medical science, short-range wireless communications, and homeland security systems. Of course, generating practical THz energy at such high frequencies, typically from 100 GHz to 30 THz, can be challenging. Fortunately, researchers from a number of different facilities in Canada, performing work sponsored by the Natural Science and Engineering Research Council of Canada, have developed an all-fiber approach to THz signal generation using a periodically poled optical fiber. In this approach, a continuous-wave (CW) THz signal is generated at the fiber by beating two optical wavelengths from two laser sources with the wavelength spaced in proportion to the desired frequency of the THz wave.

Terahertz signals have been generated through the use of nonlinear crystal devices, such as those based on gallium arsenide (GaAs) or gallium phosphide (GaP) substrate materials, although such approaches tend to be expensive. As a lower-cost solution, a periodically poled optical fiber was used to generate a tunable terahertz wave by beating two wavelengths with a wavelength spacing corresponding to a THz wave at the periodically poled fiber. The periodically poled fiber is made by a length of twin-hole optical fiber with its fiber core between the two holes. After the twin-hole fiber is drawn, two silver electrodes are inserted into the two holes. The twin-hole fiber is then thermally poled at a high temperature (about +260°C) with a voltage of +3.3 VDC applied to the two silver electrodes to instigate second-order nonlinearities into the nonhomogeneous glass of the fiber. An ultraviolet laser source is then used to periodically erase the thermal poling induced second-order nonlinearity to achieve quasi-phase matching (QPM) to enhance the energy conversion efficiency of the THz source. In this way, a THz CW signal can be produced using a periodically poled optical fiber based on an optical difference-frequency-generation (DFG) approach.

To evaluate this THz signal generation approach, an experiment was conducted in which CW signals at 3.8 THz were produced using incident light waves of 1530.0 and 1560.1 nm. Using a THz detector, signal power of about 0.5 μ W was measured and a conversion efficiency of about  2.9 × 10-5 was also measured. Although the experimenters admitted that the theoretical signal power levels and conversion efficiency were somewhat higher than the values obtained in the experiment, improved performance could be achieved if the emitted terahertz wave is completely collected and a longer periodically poled fiber is used. The frequency of the generated wave was tunable from 2.2 to 3.8 THz, corresponding to a wavelength in free space from 136.36 to 78.95 μm, in support of a variety of different THz applications. While still an experiment, this use of a periodically poled fiber to generate THz signals shows great promise for future THz applications.

See “Frequency Tunable Continuous THz Wave Generation in a Periodically Poled Fiber,” IEEE Transactions on Terahertz Science and Technology, May 2015, p. 470.

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

Phase Noise Fundamentals: What You Need to Know

Dec. 26, 2024
Gain a deeper understanding of phase noise and its impact on oscillators. This white paper offers a concise technical introduction to phase noise concepts, along with an overview...

Selecting Your Next Oscilloscope: Why Fast Update Rate Matters

Dec. 26, 2024
Selecting your next oscilloscope - A guide from Rohde & Schwarz

Webinar: Fundamentals of EMI Debugging & Precompliance

Dec. 26, 2024
In this webinar our expert will guide you through the fundamentals of EMI debugging & precompliance measurements.

Learn the Fundamentals of Test and Measurement

Dec. 26, 2024
Unlock your measurement potential with Testing Fundamentals from Rohde & Schwarz. Expert resources to help you master measurement basics. Explore now.