Another frequency-pulling phenomenon is sometimes referred to as injection locking or injection pulling. It concerns the effect of an interfering signal that is very near the VCO's operating frequency. When an interferer's amplitude at the VCO output port is sufficient, it can cause the VCO to shift its oscillation frequency to match the interfering frequency.1 Another key performance factor affected by poor output isolation is phase noise. Much research has been done in the last few years to better describe the generation of phase noise in oscillators. Conditions that produce phase noise include changes in load impedance, power reflections back to the VCO output, excessive ground current, and radiated coupling due to poor RF layout. The induced voltage changes can cause bias-current fluctuations in the active device, a modulating effect on Ccb, perturbations in amplitude, and other subtle problems that degrade performance.2
Adequate VCO isolation also depends on board layout, and whether the VCO is discrete, integrated, or modular. VCO operation can be disturbed by any radiated RF energy coupled to the VCO. The energy can be coupled directly to the VCO or through other circuits or traces connected to the VCO. Even unconnected circuit traces running near the VCO can serve as antennas. Proper layout should always be observed when VCO noise performance is critical.
One cause of conducted degradation can be the RF power amplifier (PA) turning on or off, which can cause an impedance change in the signal path or in other circuits, thereby picking up radiated RF energy and conducting it back through the signal path. Good printed-circuit-board (PCB) layout helps to minimize radiated and conducted perturbations of the VCO. Grounding, shielding, and the routing of traces near the VCO can affect VCO operation, as well as the amount of isolation the VCO buffer circuit can achieve.
It is also important to understand how these degradation mechanisms manifest themselves during radio operation. Poor output isolation can degrade the phase-locked-loop (PLL) lock time when a reflected signal reaches the VCO. It may be necessary to isolate the phase-detector input from the receiver (Rx) or transmitter (Tx) to alleviate this problem. High phase noise can also degrade the adjacent-channel protection in either transmit or receive mode. Poor VCO isolation can also result in modulation distortion during transmit operation.
Resolving a radiated-interference problem often requires experimentation, but a conducted-interference problem can often be resolved by simply adding a VCO buffer amplifier. An integrated buffer such as the MAX2472 is small and provides excellent isolation of the VCO. Its circuit topology is suitable for providing the local oscillator (LO) and phase-detector input signals, while maintaining isolation between them and the VCO.