Submillimeter-Wave Transceiver Chip Tunes Across 70-GHz Bandwidth

Submillimeter-Wave Transceiver Chip Tunes Across 70-GHz Bandwidth

June 20, 2018
A single-chip design includes a mixer, amplifiers, and antennas for use from 305 to 375 GHz for high-data-rate communications.

Researchers from the Institute of Microelectronics and Integrated Circuits, Universitat der Bundeswehr, Muenchen, Germany, and Infineon Technologies, Neubiberg, Germany, reported on a single-chip transceiver with on-chip antennas and continuous frequency coverage from 305 to 375 GHz that’s well-suited for high-data-rate wireless communications. The integrated circuit includes a push-pull voltage-controlled oscillator (VCO), frequency mixer, intermediate-frequency (IF) amplifier, and three-stage power amplifier in addition to the integrated antennas.

The transceiver demonstrates effective isotropic radiated power (EIRP) of +18.4 dBm at 343 GHz with phase noise of −79 dBc/Hz offset 1 MHz from the carrier. Intermediate-frequency (IF) conversion gain is 28 dB with a fundamental mixer frequency-conversion  architecture.

The submillimeter-wave transceiver IC is fabricated using a 130-nm silicon-germanium (SiGe) BiCMOS semiconductor technology. The VCO handles the frequency mixing. It provides fundamental-frequency and doubled-frequency outputs, which are used with the frequency mixer, and a divide-by-64 on-chip divider as part of the frequency-conversion plan.

Separate on-chip rectangular patch antennas are used for the transmit and receive functions. These are rectangular patches with multiple metal layers and a metal ground plane for optimal radiation efficiency. They are formed by combining two quarter-wavelength resonant sections to form a half-wavelength radiating patch. An array of viaholes is used between the metal layers and the ground plane with a ground ring surrounding the patch for consistent performance. Using on-chip antennas at these high frequencies is more efficient than the high losses suffered by external antennas at such high submillimeter-wave frequencies.

The patch antenna was simulated with several modeling software tools, including the three-dimensional (3D) ANSYS High Frequency Structure Simulator (HFSS) electromagnetic (EM) simulation software and the 3D planar EM simulation software from Sonnet Software, which yielded similar results. For testing, the transceiver IC was mounted to a two-sided printed-circuit board (PCB) with a brass plate attached to the PCB using conductive epoxy glue to help with the cooling.

See “Fully Integrated Single-Chip 305-375-GHz Transceiver With On-Chip Antennas in SiGe BiCMOS,” IEEE Transactions on Terahertz Science and Technology, Vol. 8, No. 2, May 2018, p. 329.

About the Author

Jack Browne | Technical Contributor

Jack Browne, Technical Contributor, has worked in technical publishing for over 30 years. He managed the content and production of three technical journals while at the American Institute of Physics, including Medical Physics and the Journal of Vacuum Science & Technology. He has been a Publisher and Editor for Penton Media, started the firm’s Wireless Symposium & Exhibition trade show in 1993, and currently serves as Technical Contributor for that company's Microwaves & RF magazine. Browne, who holds a BS in Mathematics from City College of New York and BA degrees in English and Philosophy from Fordham University, is a member of the IEEE.

Sponsored Recommendations

Phase Noise Fundamentals: What You Need to Know

Dec. 26, 2024
Gain a deeper understanding of phase noise and its impact on oscillators. This white paper offers a concise technical introduction to phase noise concepts, along with an overview...

Selecting Your Next Oscilloscope: Why Fast Update Rate Matters

Dec. 26, 2024
Selecting your next oscilloscope - A guide from Rohde & Schwarz

Webinar: Fundamentals of EMI Debugging & Precompliance

Dec. 26, 2024
In this webinar our expert will guide you through the fundamentals of EMI debugging & precompliance measurements.

Learn the Fundamentals of Test and Measurement

Dec. 26, 2024
Unlock your measurement potential with Testing Fundamentals from Rohde & Schwarz. Expert resources to help you master measurement basics. Explore now.