5. Simulation of the chosen silicon driver. Note: the design meets optimal impedence requirement over process skew of transistors.
In order to model the silicon an electrical simulator Spice is required. Spice allows a transistor level representation of the driver, which can take the device level parameters into account. It can also do a much better job modeling manufacturing tolerance, voltage, and other factors. The desired impedence range also enables the right architecture for this application (Fig. 5).
Lastly the transistor level model can be assembled with the s2p model of the link to build a complete end to end system. This enables a non-linear transient simulation to be performed to measure slew rates and large signal reflections.
Conclusion
The continuing advances in both silicon modelling, circuit simulators, and 3D EM simulators have meant that increasingly a design team has access to simulation and computer tools. These tools allow for a robust co-design of silicon, PCB, and system design. This article uses a hypothetical example of transmitting PCI-e clock over an air interface to describle one such co-design possibility using Spice for circuit modelling, CST for 3D EM modelling, and Optenni for impedance matching.
The rapid miniaturization of consumer devices coupled with the use of challenging materials such as an all-metallic chassis and severe-power-consumption constraints has meant that complete system design is required to converge on performance targets. The maturation of computer tools across the workflow has meant that there are multiple off the shelf tools to accomplish this co-design flow. These tools are available even for traditionally low cost designs, such as those used for consumer devices, tablets, phones, and wearables.