Download this article as a .PDF
Designing RF/microwave filters generally involves utilizing software tools to create simulation models. One factor that designers must be mindful of when modeling a filter is the amount of time needed for a simulation to execute. This length of time can be quite substantial in some cases.
Of course, when simulating a filter design, simulation data is acquired over a user-specified frequency range. Data is obtained across this frequency range at an interval that is also specified by the user. By decreasing the frequency interval, or step size, designers can essentially model filters more precisely. However, decreasing the step size generally comes at the expense of increasing the time needed for the simulation to execute.
One software company, COMSOL, has developed methods that can significantly reduce filter simulation time without sacrificing precision. With the RF Module, which is an add-on product to COMSOL Multiphysics software, designers can quickly simulate filters even when specifying a small step size.
This article explains how the Frequency-Domain Modal method within the RF Module software can accelerate filter simulation time. Two design examples are presented to illustrate how this method can benefit filter designers. The first design presented is a waveguide bandpass filter. A microstrip edge-coupled bandpass filter design is then analyzed. All simulations were performed with an Acer Aspire R14 R5-471T laptop, which has a 2.3-GHz Intel Core i5-6200U processor.