Image

DMSP Imager Measures Brightness Temperatures to Track Weather

April 3, 2014
The Special Sensor Microwave Imager (SSM/I) aboard the latest Defense Meteorological Satellite Program (DMSP) satellite utilizes a next-generation sensor suite to study cloud covers.

Engineers and technicians encapsulate the 19th Defense Meteorological Satellite Program (DMSP) block 5D weather satellite. (Photo courtesy of the United Launch Alliance)

Since the 1960s, the Defense Meteorological Satellite Program (DMSP) has helped collect data that enables military forecasters to find, track, and forecast weather systems globally to improve operations. The newest satellite in the fleet, DMSP-19, was recently encapsulated for its upcoming launch. It is equipped with an upgraded sensor suite that will help capture visible and infrared cloud cover. As a result, it will be able to study meteorological, oceanographic, and solar-geophysical information in all conditions.

The DMSP-19’s main sensor is the Special Sensor Microwave Imager (SSM/I).  That imager provides all-weather capability for tactical operations and is especially useful in forecasting severe-storm activity.  According to the National Snow & Ice Data Center, the SSM/I is “a seven-channel, four-frequency, orthogonally polarized, passive microwave radiometric system that measures atmospheric, ocean and terrain microwave brightness temperatures at 19.35, 22.2, 37.0, and 85.5 GHz.”

The instrument consists of an offset parabolic reflector that is fed by a corrugated, broadband, seven-port horn antenna. The absolute brightness of the scene is received by the antenna and then spatially filtered to produce an effective input signal of the feed horn. This data is used to note geophysical parameters, such as ocean surface, wind speed, precipitation over land, soil moisture, and land surface temperature.

Another on-board sensor, the Operational Linescan System, observes clouds via both visible and infrared imagery for worldwide forecasts. It scans areas 1800 miles wide and is capable of covering the entire earth in about 12 hours. All of these elements combine to track and forecast weather systems--focusing particularly on remote and hostile areas for deployed troops.

The DMSP-19’s April 2014 launch is the program’s first in five years, as DMSP-18 was launched in 2009. Over 40 satellites have been produced in the program’s history. DMSP is led by the U.S. Air Force Space and Missile Systems Center with controls provided by the National Oceanic and Atmospheric Administration. All DMSP satellites are integrated and tested at Lockheed Martin Space Systems’ facility in California.

About the Author

Iliza Sokol | Associate Digital Editor

Iliza joined the Penton Media group in 2013 after graduating from the Fashion Institute of Technology with a BS in Advertising and Marketing Communications. Prior to joining the staff, she worked at NYLON Magazine and a ghostwriting firm based in New York.

Sponsored Recommendations

Phase Noise Fundamentals: What You Need to Know

Dec. 26, 2024
Gain a deeper understanding of phase noise and its impact on oscillators. This white paper offers a concise technical introduction to phase noise concepts, along with an overview...

Selecting Your Next Oscilloscope: Why Fast Update Rate Matters

Dec. 26, 2024
Selecting your next oscilloscope - A guide from Rohde & Schwarz

Webinar: Fundamentals of EMI Debugging & Precompliance

Dec. 26, 2024
In this webinar our expert will guide you through the fundamentals of EMI debugging & precompliance measurements.

Learn the Fundamentals of Test and Measurement

Dec. 26, 2024
Unlock your measurement potential with Testing Fundamentals from Rohde & Schwarz. Expert resources to help you master measurement basics. Explore now.