In development since 1998 the GMD system incorporates features such as early detection and tracking during the boost phase midcourse target discrimination and precision intercept and destruction of inbound intercontinental ballistic missiles ICBMS Images courtesy of Boeing

Missile Defense System Uses Dual Radars To Optimize Tracking

July 23, 2014
The ground-based midcourse defense (GMD) system, in conjunction with an exoatmospheric kill vehicle (EKV) device, successfully tracked and destroyed a targeted threat during testing.

In a test performed by the U.S. Missile Defense Agency and a Boeing-led industry team, the ground-based midcourse defense (GMD) system intercepted and destroyed a target using an enhanced version of an exoatmospheric kill vehicle (EKV) device. The GMD system is a missile defense program that helps defend against long-range ballistic missile attacks.

The test began when a threat-representative target was launched over the Pacific Ocean from the Marshall Islands. Using the Boeing-developed sea-based X-band radar and the Aegis SPY-1 radar for tracking data, ship-based military operators then launched the ground-based interceptor. The EKV, attached to an intercept booster, was released while the interceptor was in space.

Receiving updates from the GMD system, the EKV detected and tracked the target, and then destroyed it through a high-speed impact. The test met various key objectives, including a long flight time and high-velocity closing speeds.

In development since 1998, the GMD system incorporates features such as early detection and tracking during the boost phase, midcourse target discrimination, and precision intercept and destruction of inbound intercontinental ballistic missiles (ICBMS). The program is a major facet of the U.S.’s multilayered ballistic missile defense architecture. The entire program consists of command-and-control facilities, communications terminals, and a 20,000-mile fiber-optic communications network.

In addition to Boeing, industry team participants included Bechtel, Northrop Grumman, Orbital Sciences Corp., Raytheon, and Teledyne Brown Engineering.

About the Author

Iliza Sokol | Associate Digital Editor

Iliza joined the Penton Media group in 2013 after graduating from the Fashion Institute of Technology with a BS in Advertising and Marketing Communications. Prior to joining the staff, she worked at NYLON Magazine and a ghostwriting firm based in New York.

Sponsored Recommendations

Phase Noise Fundamentals: What You Need to Know

Dec. 26, 2024
Gain a deeper understanding of phase noise and its impact on oscillators. This white paper offers a concise technical introduction to phase noise concepts, along with an overview...

Selecting Your Next Oscilloscope: Why Fast Update Rate Matters

Dec. 26, 2024
Selecting your next oscilloscope - A guide from Rohde & Schwarz

Webinar: Fundamentals of EMI Debugging & Precompliance

Dec. 26, 2024
In this webinar our expert will guide you through the fundamentals of EMI debugging & precompliance measurements.

Learn the Fundamentals of Test and Measurement

Dec. 26, 2024
Unlock your measurement potential with Testing Fundamentals from Rohde & Schwarz. Expert resources to help you master measurement basics. Explore now.