Image

Mitigate Distortions in Software-Defined Wideband Receivers

Nov. 21, 2014
To limit the effects of wideband nonlinear distortion on direct-conversion receivers, researchers in Finland and Germany have developed a method using a digital feed-forward algorithm for distortion mitigation.

Software-defined-radio (SDR) technologies are becoming more viable for radio systems ranging from military to mobile wireless. As the use of these radio systems grows, techniques for managing the performance of these deployments will be needed. Maintaining a reasonable spurious-free dynamic range (SFDR) and adequate linearity can be challenging for SDR deployments, which rely on flexible spectrum use to optimize radio-system performance. To enhance these radios’ performance in multi-carrier/multi-radio environments, the analysis and digital mitigation of nonlinear distortions with SDRs has been researched by Michael Grimm and Reiner Thoma from the Ilmenau University of Technology, Ilmenau, Germany,  and Markus Allen, Jaakko Marttila, and Mikko Valkama from the Tampere University of Technology in Tampere, Finland.

To limit the effects of wideband nonlinear distortion on direct-conversion receivers, researchers in Finland and Germany have developed a method using a digital feed-forward algorithm for distortion mitigation.

Their paper focuses on the use of digital feed-forward mitigation algorithms. These are used to clean the broadband signal of nonlinear distortions and mirror-frequency interferers with wideband multi-carrier/multi-radio direct-conversion receivers (DCRs). The architecture consists of a parallel, adaptive digital-mitigation structure for cascaded RF and broadband nonlinearities with mixer and broadband in-phase/quadrature (I/Q) imbalances. A two-tone signal generator and USRP SDR with a computer interface are used to experimentally verify the proposed mitigation architecture.

The researchers provide rigorous mathematical, simulation, and experimental explanations to describe and justify the technique. The results of the experimentation confirmed the enhanced performance for both the linearity and SFDR of an SDR. Thus, some proof of the existence of nonlinear distortions in these environments was provided. The paper mentions that the technique may also be applied to DCRs as a whole and not strictly DCR SDRs.

See “Joint Mitigation of Nonlinear RF and Baseband Distortions in Wideband Direct-Conversion Receivers,” IEEE Transactions On Microwave Theory And Techniques, Jan. 2014, p. 166-182.

About the Author

Jean-Jacques DeLisle

Jean-Jacques graduated from the Rochester Institute of Technology, where he completed his Master of Science in Electrical Engineering. In his studies, Jean-Jacques focused on Control Systems Design, Mixed-Signal IC Design, and RF Design. His research focus was in smart-sensor platform design for RF connector applications for the telecommunications industry. During his research, Jean-Jacques developed a passion for the field of RF/microwaves and expanded his knowledge by doing R&D for the telecommunications industry.

Sponsored Recommendations

Free Poster: Power Electronics Design and Testing

Dec. 23, 2024
Get with this poster a guidance about usual converter types, most important measurements and general requirements for power electronics design and testing. Register for a download...

eGuide: Optimizing and Testing RF Power Amplifier Designs

Dec. 23, 2024
This eGuide explores electronic design automation to real RF devices, focusing on verification, characterization, repeatability, and throughput, while highlighting key steps from...

Free Poster: Wireless Communications Standards

Dec. 23, 2024
Get insights about the latest cellular, non-cellular, IoT and GNSS specifications including 5G, LTE and Wi-Fi. Sign up to receive your poster in the mail or via download.

5G NR Testing – Are You Ready for the 5G Challenges?

Dec. 23, 2024
5G NR deployment is accelerating, unlocking new use cases, applications, and opportunities for devices and infrastructure. The question is: are you prepared for these advancements...