where
(see equation 29)
Now take out the n = 0 term and add this to the sum of the rest. For n = 0
(see equation 30)
Combining the two results in Eq. 31:
(see equation 31)
Armed with these mathematical tools, it is now possible to substitute some component values that correspond to those used in the test PLL and observe the results. For example, for ?, the angular frequency, is 105001000000(2 π). The loop filter values for a standard charge-pumptype phase detector are shown in Fig. 2 and are R1 = 10 x 103; C1 = 18 x 10-9; and C2 = 2.7 x 10-9. The phase detector gain for the charge pump using 4 mA, Kpd, is Kpd = 4 x 10-3/2π . The phase detector comparison frequency of 25 kHz (sampling frequency, fs) is given as fs = 25 x 103. The reference divider ratio, Rp, is 672, and the sampling frequency, ?s, in radians, is ?s = 2πfs. The VCO gain in radians/s/V (for a VCO with a tuning sensitivity of 20 MHz/V), K?VCO = (2π )20 x 106. The loop division ratio, N, is 35200. The gain parameter, G(s), which includes the phase detector gain and the loop filter response, becomes