Download this article in .PDF format
Noise can not only degrade the performance of electronic equipment, it can also prevent new electronic equipment designs from passing compliance testing. A combination of factors, such as increasing digital processing speeds, shrinking electronic package sizes, and more densely spaced electronic components, are contributing to increased amounts of electromagnetic interference (EMI) and radio-frequency-interference (RFI) noise, and boosting the needs to understand such noise sources and how to protect against them. Fortunately, as noise sources have become more complex, filtering solutions, such as filtered connectors, have been developed to help keep EMI and RFI in check.
Unwanted noise such as EMI and RFI can degrade the performance of communication and computing systems and cause false triggering and faulty readings in vital sensor circuits, resulting in system failures. Such noise can also cause incompatibility and compliance problems between different commercial, industrial, and military systems, resulting in noncompliance between those systems. As a result, engineers must be fully aware of and address the needs for EMI, RFI, and even electromagnetic-pulse (EMP) protection during the design and test phases of a project; various operating conditions, such as transient voltage surges, can result in elevated EMI and RFI levels. Being aware of possible problems from EMI, RFI, and EMP can help avoid failing compliance testing for a new product, and the costs of redesigning and retesting the electronic systems and components for that product.
EMI suppression is often handled by filters designed to meet the increased performance demands levied during testing from various standards, such as MIL-STD-461, RTCA-DO-160, CISPRE, and CE marking (formerly EC or European Conformity) in European countries. The trends of increased EMI/RFI noise from electronic products has led to the need for multiple shielding approaches and higher performance filters.
One of the problems in controlling EMI is that although electronic and mechanical system and component designers are well versed in the engineering problems of their respective areas, layouts required for electromagnetic compatibility (EMC) may be somewhat new to them. They may be unfamiliar with the particulars of the design/test compliance requirements, or are unaware of the costs associated with failing compliance testing and resulting redesign costs for their devices. Even without failures, it may cost $50,000 (US) to fully test and certify a device, including all required environmental and EMI compliance testing. Failing the test parameters may end up costing twice as much.
Four approaches are available to handle EMI/EMC filtering requirements. Filtering can be designed into a printed-circuit board (PCB) or device during the initial engineering phase. Or filtering can be added after a product’s initial design stage by means of three devices: (1) filter inserts, installed in front of device connectors, (2) filtered connectors, with a filter contained within the device connector, and (3) filter/transient-voltage-suppression (TVS) interface modules.