Over-The-Air Demonstration
Visitors to the exhibition were able to take in several demonstrations from NI. One of them was the same 5G over-the-air (OTA) test solution that was first shown at the IEEE Wireless Communications and Networking Conference (WCNC) in March.
James Kimery, director of marketing for RF, communications, and software-defined radio (SDR) initiatives at NI, led a walk-through of the demo. “This is one of the first OTA demos based on Verizon’s 5G specification,” said Kimery. “What’s interesting is that it’s actually a MIMO setup at 28 GHz—and it’s the full spec. You can actually test the full bit rate.”
Kimery continued, “We announced the baseband portion of the system last year. And we recently announced our 28-GHz heads, which have both transmit and receive capability. Another key technology is the phased-array antennas. This technology allows for real-time control of the beams in the array, which is really important. What’s good about this is that researchers can experiment with the beams to understand how the beams are shaped and then optimize performance that way.”
The Porcupine Channel Sounder
Also demonstrated was AT&T’s channel sounder, which was created in collaboration with NI. The channel-sounding system, referred to by AT&T as the “Porcupine,” uses the same aforementioned 28-GHz heads. However, the difference is that it connects to the Porcupine on the receive side.
“We’re using some advanced techniques,” noted Kimery. “A typical channel sounder will have two horn antennas—one for transmitting and one for receiving. Those horn antennas are rotated using a servo motor to cover 360 degrees. This system does everything automatically. There are switches inside to go through each of the horns in less than 150 ms.”
According to Kimery, the fast measurement speed of the Porcupine is highly beneficial. He explained, “The speed allows you to take measurements faster. You can capture 2 GHz of bandwidth from four streams and have all the measurements done in 150 ms. The normal way is to take a snapshot, move the antenna, take another snapshot, etc. But that process only acquires the data. You then have to take that data and post-process it. This new system takes 4X or more data than a typical channel sounder and processes it an order of magnitude faster.”
Kimery added, “The other benefit of this channel sounder is that it allows you to know how a channel really behaves. If you’re taking snapshots and moving a servo, there is a time gap between snapshots. This system can quickly take 360-degree measurements, allowing you to get a good picture of what the channel looks like in real-time.”