2. The NC5115A AWGN source was at the heart of this mmWave noise figure test setup. Tektronix’s RSA5126B real-time signal analyzer was used to perform measurements.
In the setup, the NC5115A drove the device under test (DUT), which was a V-band low-noise amplifier (LNA). The DUT was followed in order by an isolator, LNA, and bandpass filter. After the filter came a mixer, which was used to downconvert to a frequency within the measurement range of the RSA5126B analyzer. Also included in the setup was a local oscillator (LO) that drove the mixer, with the analyzer supplying the LO with a 10-MHz reference.
To determine the noise figure, the test system was first calibrated without the DUT. The DUT was then placed back into the setup. According to Wireless Telecom Group, measurement uncertainty was reduced thanks to the isolator and the other LNA used in the arrangement. They allowed for a reduction in reflected power between components in the test system by reducing the noise figure of the test setup itself. With this configuration, the company notes that the overall accuracy of the noise-figure measurement is primarily determined by the accuracy of the noise-source calibration.
In addition to the mmWave noise figure test configuration, Wireless Telecom Group also demonstrated an OTA test system (Fig. 3). The company is heavily invested in OTA testing, evidenced by the demonstration of an OTA test system at last year’s IMS. This year’s OTA demo utilized an NC1128B amplified noise module, which has a frequency range of 10 MHz to 10 GHz and can produce AWGN as high as 0 dBm. Wireless Telecom Group asserts that a noise source coupled together with a spectrum analyzer can replace the vector network analyzers (VNAs) used in counterpart test systems.