The circuit with combined MT and DI-RR synthesized MWP bandstop-bandpass reconfigurable filters with high RF performance. The MWP bandstop/notch filter had 58-dB rejection with 10 dB of RF gain and 15-dB noise figure (NF). With proper tuning, the filter could be reconfigured into an MWP bandpass filter with 20 dB of rejection, 1.2 dB of RF gain, and 21.8 dB NF.
These results showed that the new circuit has versatile filtering functions along with superior RF performance. However, despite these achievements, the filter bandwidths of the new circuit were still in the order of hundreds of MHz, which isn’t sufficient for some RF applications.
Boosting Bandwidth with SBS
To overcome this challenge and create an MWP filter with a narrow bandwidth, a nonlinear optical effect known as stimulated Brillouin scattering (SBS) was introduced to the system. SBS is a third-order nonlinear property in an optical medium that’s created from the interaction of optic and acoustic waves in a waveguide.
Thus, in the next circuit design, a spiral waveguide capable of induced SBS was added to the system. Together with MT and DI-RR, this new circuit aimed to create a programmable MWP Brillouin filter with a reconfigurable narrow bandwidth and high RF performance.
The waveguides were fabricated using a standard photonics IC process. First, a SiO2 layer was grown from wet thermal oxidation of single-crystal silicon substrate at temperatures above 1000°C. Low-pressure chemical-vapor deposition (LPCVD) was then used for the Si3N4 layers, together with the gas tetraethylorthosilicate (TEOS) for the intermediate SiO2 layer. Subsequently, the waveguides were patterned using contact lithography, and processed with dry etching. Finally, the waveguides were covered with an additional SiO2 layer through LPCVD TEOS.
Test Results
Performance of the core MT and DI-RR was assessed against wide range of relevant factors (Fig. 3).