Image

Multi-Tone Testing Multiplies Test Solutions

April 8, 2016
This application note discusses the use of multi-tone testing, which can offer a range of test benefits.

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

By performing multi-tone testing, a large number of benefits can be achieved. For instance, equipment efficiency can be improved and equipment-under-test (EUT) can be tested under real-world threat conditions. Faster time-to-market for both new and enhanced products is another benefit of this approach. In the application note, “Multi-Tone: Testing, Theory and Practice,” AR RF/Microwave Instrumentation discusses the multi-tone test methodology. The document explains how this approach can be implemented, as well as the advantages of using this method.

The application note begins with a basic definition of a multi-tone signal. An explanation of how these signals are represented in both the frequency- and time-domains is presented. Modern audio measurements are one example of an application that utilizes multi-tone signals. Intermodulation distortion (IMD) measurements are mentioned, as multi-tone signals are used to test the nonlinear distortion of amplifiers and receivers.

Courtesy of AR RF/Microwave Instrumentation

Various methods of generating multi-tone signals are explained. The traditional approach is to generate multiple signals by using multiple independent continuous-wave (CW) generators that are added together with a combiner. Alternately, multiple signals can be generated by using one vector signal generator (VSG) in place of multiple CW generators. A VSG can generate fixed or random initial phase sets, deliver accurate repeatable multi-tone signals, and is easily configurable by independently setting each tone. The third approach is to use multiple signal generators, multiple amplifiers, and multiple antennas. When using this technique, the signals are actually combined in free space. Furthermore, a comparison between analog signal generators and VSGs is provided.

Electromagnetic-compatibility (EMC) testing with multi-tone signals is analyzed. By using a VSG with a frequency selective power measurement device like a vector signal analyzer (VSA), multiple tones can be generated, measured, and controlled. An explanation of how test times can be reduced by using a multi-tone test method is provided. Real-world threats can also be simulated by using this test approach, as EUTs can be exposed to more than one tone at a time in real-world applications.

AR RF/Microwave Instrumentation, 160 School House Rd., Souderton, PA 18964-9990

Looking for parts? Go to SourceESB.

Download this article in .PDF format
This file type includes high resolution graphics and schematics when applicable.

Sponsored Recommendations

MMIC Medium-Power Amplifier Covers 6 to 12 GHz

Nov. 11, 2024
Mini-Circuits is a global leader in the design and manufacturing of RF, IF, and microwave components from DC to 86GHz.

RF Amplifier and Filter Testing with Mini-Circuits Power Sensors

Nov. 11, 2024
RF power sensors are essential for accurately measuring RF components like filters and amplifiers, focusing on parameters such as insertion loss and gain. Employing instruments...

High-Frequency Modules to 110 GHz

Nov. 11, 2024
Mini-Circuits’ wide selection of high-frequency modules are designed, assembled and tested in-house by the best talent in the industry at our Deer Park Technology Center. The ...

Defense Technology: From Sea to Space

Oct. 31, 2024
Learn about these advancements in defense technology, including smart sensors, hypersonic weapons, and high-power microwave systems.